
Temporal extensivity of Tsallis’ entropy and the bound on entropy production rate

Sumiyoshi Abe* and Yutaka Nakada
Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

�Received 21 March 2006; published 17 August 2006�

The Tsallis entropy, which is a generalization of the Boltzmann-Gibbs entropy, plays a central role in
nonextensive statistical mechanics of complex systems. A lot of efforts have recently been made on establish-
ing a dynamical foundation for the Tsallis entropy. They are primarily concerned with nonlinear dynamical
systems at the edge of chaos. Here, it is shown by generalizing a formulation of thermostatistics based on time
averages recently proposed by Carati �A. Carati, Physica A 348, 110 �2005�� that, whenever relevant, the
Tsallis entropy indexed by q is temporally extensive: linear growth in time, i.e., finite entropy production rate.
Then, the universal bound on the entropy production rate is shown to be 1/ �1−q�. The property of the
associated probabilistic process, i.e., the sojourn time distribution, determining randomness of motion in phase
space is also analyzed.
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I. INTRODUCTION

The Boltzmann-Gibbs entropy and ordinary statistical me-
chanics based on it require a system under consideration to
be in the strongly chaotic regime. It may be possible to view
this point in Boltzmann’s Stosszahlansatz �i.e., molecular
chaos hypothesis�, which, combined with the H theorem, en-
ables one to obtain the thermal equilibrium distribution in the
long-time limit. That is, there exists no correlation between
colliding particles. Over a century after Boltzmann’s period,
physicists and mathematicians have made a lot of efforts to
build a bridge between statistical mechanics and microscopic
dynamics. As known today, one way to satisfy the above
requirement is to demand that the system possesses at least
one positive Lyapunov exponent �1,2�.

The Kolmogorov-Sinai entropy �1,2�, which is the nonlin-
ear dynamics counterpart of the Boltzmann-Gibbs entropy,
quantifies the strength of dynamical chaos. A point of crucial
importance is its change due to dynamical evolution: it
grows linearly in time, that is, the entropy production rate is
constant. Then, the Pesin identity �1,2� tells that the rate is
given by the sum of positive Lyapunov exponents. In anal-
ogy between statistical mechanics and chaotic dynamics, this
linear growth of the Kolmogorov-Sinai entropy corresponds
to thermodynamic extensivity of the Boltzmann-Gibbs en-
tropy �1�, i.e., linear scaling with respect to the number of
particles. It is considered that extensivity of entropy is an
indispensable requirement, with which thermodynamics can
be constructed. This may be the case even if the system
energy is nonextensive �3�.

It should be noted that, in general, it is sufficient to realize
the linear growth of the Kolmogorov-Sinai entropy and ther-
modynamic extensivity of the Boltzmann-Gibbs entropy
only in the long-time limit and the thermodynamic limit,
respectively.

A physical quantity is said to be temporally extensive if it
grows linearly in time. Thus, for example, the Kolmogorov-
Sinai entropy possesses temporal extensivity for chaotic dy-
namical systems.

Now, the situation becomes different for complex dy-
namical systems prepared at the edge of chaos, in which their
maximum Lyapunov exponents strictly vanish. In this case,
the standard Pesin identity becomes trivial �0=0�, offering
no information, and the Kolmogorov-Sinai entropy fails to
be temporally extensive. Then, the so-called generalized
Lyapunov exponents or, q-Lyapunov exponents �4–10� and
the Tsallis entropy �11� may become physically relevant. The
authors of Refs. �4–10� have studied several kinds of nonlin-
ear dynamical systems at the edge of chaos and have found
that the generalized Pesin identity with the q-Lyapunov ex-
ponents holds and the Tsallis entropy with the entropic index
q different from unity �i.e., different from the Kolmogorov-
Sinai limit� is temporally extensive. Most of these works are
numerical, but remarkably Ref. �8� rigorously shows these
results for the logistic map by using exact renormalization
group analysis.

Generalized statistical mechanics based on the Tsallis en-
tropy, termed nonextensive statistical mechanics �12�, is con-
sidered to be a consistent and unified framework for describ-
ing complex statistical systems and is currently under vital
investigation.

Yet, there is another approach to thermostatistics, which is
based on time averages. This method proposed by Carati
�13,14� allows us to establish a connection between a proba-
bilistic process in a phase space and definition of entropy.
Since it directly treats dynamics as a time series, it may shed
new light on a long-standing problem of statistics and dy-
namics.

In this paper, we show temporal extensivity of the Tsallis
entropy, without recourse to employing any specific dynami-
cal system. This is executed by generalizing the above-
mentioned formulation of thermostatistics based on time av-
erages. Then, we derive the universal bound on the Tsallis-
entropy production rate. We shall also see what probabilistic
process in a phase space underlies nonextensive statistical
mechanics.

The paper is organized as follows. In Sec. II, the formu-
lation of thermostatistics based on time averages presented in
Refs. �13,14� is reviewed with some modifications. In Sec.
III, such a formulation is generalized, and then it is shown*Corresponding author. Email address: suabe@sf6.so-net.ne.jp
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that the Tsallis entropy is temporally extensive. In Sec. IV,
the universal bound on the Tsallis-entropy production rate is
presented. Analysis of the probabilistic process associated
with the Tsallis entropy and nonextensive statistical mechan-
ics is performed in Sec. V. Finally, Sec. VI is devoted to
concluding remarks.

Throughout this paper, the Boltzmann constant, kB, is set
equal to unity for the sake of simplicity.

II. THERMOSTATISTICS BASED ON TIME AVERAGES

In this section, we wish to review Carati’s formulation of
thermostatistics based on time averages, which is formally
equivalent to Boltzmann-Gibbs theory. But, at the same time,
we shall make some modifications of it.

Consider a system in a phase space M. Its dynamics
yields a sequence �xn�n=1,2,. . .. This sequence is generated by a
map, � :M→M, defining the iteration xn+1=��xn�. The aver-
age of a certain physical quantity A over a fixed long time
interval 1�n�N �N�1� is given by

Ā�x0� �
1

N
	
n=1

N

A�xn� . �1�

This quantity is random, depending on the initial data, x0.
A procedure of coarse graining is to divide M into a lot of

cells: L1 ,L2 , . . . ,LK �K�1�. Let Ai and ni be the representa-
tive value of A in the ith cell Li and the number of times the
system visits Li, respectively. Then, Eq. �1� is well approxi-
mated as follows:

Ā�x0� 
 	
i=1

K

Ai
ni

N
. �2�

In this representation, �ni�i=1,2,. . .,K is random, depending on
x0.

Next, let P�ni�n��F�ni� be the cumulative probability
that the cell Li is visited ni��n� times by the system. It
essentially describes the sojourn time characterizing system
dynamics in the phase space �15�. Then, the average value of
A to be compared with observation is given by

�Ā� =
1

N
	
i=1

K

Ai�ni� , �3�

where

�ni� =


�nj=N

�
j=1

K

dF�nj�ni


�nj=N

�
j=1

K

dF�nj�

, �4�

provided that the integral should be understood as the
Lebesgue-Stieltjes integral. Equation �3� can be rewritten as

�Ā� = � −
1

N

�

��
ln Z����

�=0
�5�

with the generating function

Z��� = 
�nj=N

�
j=1

K

dF�nj�e−�	iAini

= �
j=1

K

dF�nj�e−�	iAini��N − �ini� . �6�

If the constraint is imposed on the energy

U =
1

N
	
i=1

K

	ini �7�

with 	i the representative value of the system energy in the
cell Li, Eq. �6� should be replaced by

ZU��� = �
j=1

K

dF�nj�e−�	iAini��N − �ini���U − �i	ini/N�

=
N

�2
�2
−�

�

dk1
−�

�

dk2 �
j=1

K

dF�nj�eik1UN+ik2N

��
i=1

K

e−ni��Ai+ik1	i+ik2�. �8�

Accordingly, the average value in Eq. �5� is modified as

�Ā�U = � −
1

N

�

��
ln ZU����

�=0
. �9�

It is convenient to define the function, ���, as follows:

 dF�n�e−n� = e���. �10�

Then, Eq. �8� becomes

ZU��� =
N

�2
�2
−�

�

dk1
−�

�

dk2eik1UN+ik2N+	i��Ai+ik1	i+ik2�.

�11�

In the large-N limit, the integrals are evaluated by the
method of steepest descents. The steepest-descent condition
leads to

U = −
1

N
	
i=1

K

	i��ik1	i + ik2� , �12�

N = − 	
i=1

K

��ik1	i + ik2� , �13�

in the limit �→0, where � is the derivative of  with re-
spect to the argument. As can be seen from Eq. �9�, the
relation

�Ā�U = −
1

N
	
i=1

K

Ai��ik1	i + ik2� �14�

holds in the leading order of N. �It is discussed in Ref. �13�
how fluctuations around the steepest descents are small.�
Equations. �12�–�14� imply that −���	i+�� is the average
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number of times that the cell Li is visited by the system,
where the analytic continuations, ik1=� and ik2=�, have
been made. Therefore, defining the sojourn time probability

pi = −
���	i + ��

N
, �15�

we have

�Ā�U = 	
i=1

K

Aipi. �16�

An interesting discovery of Carati is that Boltzmann-
Gibbs statistical mechanics can be reproduced if F�n� is
Poissonian, i.e., the completely random process. In this case,
Eq. �10� becomes

	
n=0

�

e−Np �Np�n

n!
e−n� = eNpe−�−Np, �17�

showing

��� = Npe−� − Np , �18�

where p is in the interval �0,1� and is to be determined later.
Here, it is noted that, in contrast to Ref. �13�, the factor Np is
used in Eq. �17� instead of p in order to make the first mo-
ment to be the fraction of time steps, Np, not p. The prefac-
tor, N, turns out to play a crucial role in the subsequent
discussion about temporal extensivity of entropy.

In anticipation of the analogy between ��� and the �free
energy,� consider the following Legendre transformation:

s��i� = �i�i + 0��i� , �19�

�i = − 0���i� , �20�

with

�i = �	i + � . �21�

In these equations, unlike in Ref. �13�, we are using only the
relevant part of ��i� in Eq. �18�

0��i� = Npe−�i, �22�

since the term, −Np, is nothing but a constant shift of the free
energy. From Eq. �18�, �i and �i are calculated to be

�i = − ln�pi/p� , �23�

�i = 0��i� = Npe−�i = Npi, �24�

where pi is given in Eq. �15�. Then, the entropy is found to
be given by the Boltzmann-Gibbs entropy

S = 	
i=1

K

s��i� = 	
i=1

K

��i�i + 0��i�� = − N	
i=1

K

pi ln pi, �25�

provided that p has been fixed as

p =
1

e
. �26�

The complete form of the Boltzmann-Gibbs entropy in Eq.
�25� is obtained here through our modifications of the work
in Ref. �13� as in Eqs. �17�, �18�, and �22�.

The �thermodynamic entropy,� Sth, may be defined by

Sth =
S

N
. �27�

From Eqs. �12�, �20�, and �27�, it follows that

�Sth

�U
= � . �28�

Thus, � is found to be the �inverse temperature,� �=1/T
�� �kB�1�. Now, using Eqs. �15� and �22�, and recalling
N=−	i���	i+��, one obtains

pi =
e−�	i

Z���
, Z��� = 	

i=1

K

e−�	i, �29�

which is formally identical to the canonical distribution in
Boltzmann-Gibbs statistical mechanics.

Note that S in Eq. �25� is temporally extensive, linearly
scaling with respect to N, and the �thermodynamic entropy�
in Eq. �27� is actually the entropy production rate.

III. TEMPORAL EXTENSIVITY OF TSALLIS ENTROPY

We wish to construct the Tsallis entropy �11� and nonex-
tensive statistical mechanics in the spirit of the discussion in
the preceding section. Although this issue has partially been
addressed in Ref. �13�, several points remain to be clarified
and some generalizations and modifications are needed. We
shall fully develop nonextensive statistical mechanics based
on time averages and establish temporal extensivity of the
Tsalls entropy.

First of all, we note that, as shown in Ref. �16�, what has
to be used in nonextensive statistical mechanics is not the
ordinary expectation value in Eq. �16� but the normalized
q-expectation value

�Ā�U,q = 	
i=1

K

AiPi
�q�, �30�

where Pi
�q� is the escort distribution �1� associated with the

original distribution, pi,

Pi
�q� =

�pi�q

	
j

�pj�q
. �31�

Since the time average should be identified with the normal-
ized q-expectation value, Eq. �15� has to be replaced by

Pi
�q� = −

���	i + ��
N

. �32�

However, the Legendre transformation should remain form
invariant as in Eqs. �19� and �20�. That is, the thermody-
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namic formalism is kept unchanged. The structure featured
in Eqs. �30�–�32� is our starting point �which is not consid-
ered in Ref. �13��.

Now, examine the following deformation of the exponen-
tial factor in Eq. �18�:

��� = Nrqeq�− �� − Nrq. �33�

In this equation, eq�x� stands for the q-exponential function

eq�x� = �1 + �1 − q�x�+
1/�1−q�, �34�

with the notation

�a�+ � max�0,a� . �35�

In the deformation-free limit q→1, this function converges
to the ordinary exponential function, ex. So, Eq. �33� tends to
Eq. �18�, if

rq ——→
q→1

p =
1

e
. �36�

As in the preceding section, we can ignore the constant
shift, −Nrq, in Eq. �33� and take only the relevant part

0��� = Nrqeq�− �� . �37�

Accordingly, we have

�i = − 0�������=�i=�	i+� = Nrq�eq�− �i��q = N
�pi�q

cq
, �38�

where

cq = 	
i=1

K

�pi�q. �39�

	i here is the value of the �energy� in the cell Li of a nonex-
tensive complex system, which different from an ordinary
simple system considered in the preceding section.

From Eqs. �37� and �38�, we have

�i = −
1

1 − q
�� �i

Nrq
�1/q−1

− 1� , �40�

0��i� = Nrq
pi

�cqrq�1/q . �41�

Using Eqs. �38�–�41�, we obtain, in contrast to Ref. �13�,
the complete form of the Tsallis entropy �11�

Sq = 	
i=1

K

s��i� = 	
i=1

K

��i�i + 0��i�� =
N

1 − q�	
i=1

K

�pi�q − 1� ,

�42�

provided that rq is chosen to be

rq = � q

�cq�1/q�2 − cq��q/�1−q�

. �43�

rq in fact converges to p=1/e in Eq. �26� in the limit q→1,
as required in Eq. �36�. At this level, the entropic index, q, is
taken to be positive. Clearly, Eq. �42� becomes Eq. �25� in
the limit q→1.

We note that the solution in Eq. �43�, and therefore the
Tsallis entropy in Eq. �42�, can exist if and only if

cq � 2. �44�

The marginal case, cq→2−0, corresponds to divergently
large rq. The consistency condition in Eq. �44� leads to an
important result, which will be discussed in the next section.

Thus, we conclude that the Tsallis entropy necessarily has
temporal extensivity if the time average is given in terms of
the escort distribution in Eq. �31� with

pi =
1

Zq���
eq„− ��	i + ��…, Zq��� = 	

i=1

K

eq„− ��	i + ��… .

�45�

Equations �30�, �31�, �42�, and �45� show that nonextensive
statistical mechanics is fully realized by the present ap-
proach.

Finally, we point out that, as in Eqs. �27� and �28�

�Sth,q

�U
= � �46�

holds for U=	i	i�i /N and

Sth,q =
Sq

N
, �47�

indicating that � is the �inverse temperature,� 1/T. Therefore,
Eq. �45� is formally identical to the q-exponential distribu-
tion in nonextensive statistical mechanics �12�.

Closing this section, we wish to emphasize that temporal
extensivity of the Tsallis entropy plays a crucial role in Eq.
�46�. For a careful discussion about necessity of extensivity
of entropy for temperature to be definable in nonextensive
systems, see Ref. �17�.

IV. BOUND ON TSALLIS-ENTROPY PRODUCTION RATE

As noted in Sec. III the Tsallis entropy and associated
nonextensive statistical mechanics can consistently be con-
structed within the time-average formulation if and only if
Eq. �44� is satisfied.

The consistency condition in Eq. �44� is always satisfied
when q�1, since, in this case, cq�	i�pi�q�1. This imme-
diately gives rise to the bound on the Tsallis-entropy produc-
tion rate

Sq

N
�

1

q − 1
�q � 1� . �48�

The situation becomes nontrivial in the case when 0�q�1.
The maximum value of cq is realized by the equiprobability,
pi=1/K �i=1,2 , . . . ,K�, giving cq

max=K1−q. Therefore, the
consistency condition in Eq. �44� yields

1 −
ln 2

ln K
� q � 1. �49�

Since K is very large, this essentially means the Boltzmann-
Gibbs limit, q→1. However, it is not a physical state con-
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sidered in nonextensive statistical mechanics of complex sys-
tems. The phase space of a complex systems at the edge of
chaos has a highly nontrivial structure: only a small number
of the cells are visited by the system. Therefore, the
equiprobability is not realized. This leads to the conclusion
that the phase-space configuration is realized in such a way
that Eq. �44� is satisfied for each system-specific value of q
� �0,1�. Thus, we find that the Tsallis-entropy production
rate has the bound

Sq

N
�

1

1 − q
�0 � q � 1� . �50�

From Eqs. �48� and �50�, we conclude that the Tsallis-
entropy production rate has the following universal bound:

Sq

N
�

1

�1 − q�
. �51�

It is of interest to examine this bound for an analytic
examples known in the literature. In Ref. �8�, the logistic
map, xt+1=1−�xt

2, with the initial condition, x0=0, is ana-
lytically discussed at the edge of chaos �=1.4011. . . .. �This
system is dissipative, and therefore the generalized canonical
distribution in Eq. �45� is irrelevant and only the property of
the Tsallis entropy may be mentioned.� The value of the en-
tropic index of such a system is calculated to be q
=0.2445. . . . On the other hand, the Tsallis-entropy produc-
tion rate, which is the q-Lyapunov exponent, �q, is found to
be �q=1/ �1−q�=1.3236. . . . This is a marginal case of Eq.
�51�. In Ref. �9�, the conservative triangle map on a torus at
the edge of chaos is numerically analyzed with an ensemble
of various initial conditions, and the values of q and �q are
found to be about zero and unity, respectively. Again, it is a
marginal case. We have examined other known examples and
found that all of them are consistent with �51�

V. PROBABILISTIC PROCESS FOR NONEXTENSIVE
STATISTICAL MECHANICS

In Sec. III we have seen that the deformation of ��� from
Eq. �18� to Eq. �33� uniquely leads to the Tsallis entropy and
nonextensive statistical mechanics. �It is in fact unique since
the discussion is based on the Legendre transformation and
the thermodynamic formalism.� In the case of Eq. �18�, the
underlying probabilistic process in the phase space is Pois-
sonian, as in Eq. �17�. What is the corresponding one for
��� in Eq. �33�? This is the issue to be addressed in this
section.

Let f�n� be a distribution function of a discrete random
variable. Then, Eq. �10� reads

	
n=0

�

f�n�z−n = f̃�z� , �52�

where

f̃�z� = e���, �53�

z = e�. �54�

Therefore, f̃�n� is the z-transformation �18� of f�n�.

The inverse z transformation is given by �18�

f�n� =
1

2
i
�

C

dzf̃�z�zn−1, �55�

where C is a circle centered at z=0 �in the complex z-plane�
surrounding all the poles of f̃�n�.

Upon applying the above inversion formula to Eq. �33�,
an analytic expression is needed for ���, since z �and there-
fore �� is complex. Accordingly, we have to employ the fol-
lowing expression:

��� = Nrq�1 − �1 − q���1/�1−q� − Nrq, �56�

that is, the previous real expression, �1− �1−q���+
1/�1−q�, is

prolonged to complex �1− �1−q���1/�1−q� with a branch point
at �=1/ �1−q�, in general. Using the change of the variable
in Eq. �54�, we have

f�n� =
1

2
i


a−i


a+i


d�e���en�, �57�

where a is the logarithm of the radius of the circle C.
Unfortunately, it does not seem to be possible to calculate

Eq. �57� analytically in terms of known functions. Here, we
make the asymptotic evaluation of f�n� for large values of n
by the method of steepest descents. Let us rewrite Eq. �57�
with Eq. �56� as follows:

f�n� =
e−Nrq

2
i


a−i


a+i


d�e����, �58�

���� = Nrq�1 − �1 − q���1/�1−q� + n� . �59�

Together with the steepest-descent condition, ����0�=0, this
approximation yields

f�n� 

e−Nrq+���0�

�2
����0�
, �60�

where

���0� =
1

1 − q
�n − qNrq� n

Nrq
�1/q� , �61�

����0� = qNrq� n

Nrq
�2−1/q

��0� . �62�

Therefore, for large values of n, f�n� asymptotically behaves
as follows:

f�n� � �n1/�2q�−1 exp�−
qNrq

1 − q
� n

Nrq
�1/q� �0 � q � 1�

n1/�2q�−1 exp�−
n

q − 1
� �q � 1� . �

�63�

In particular, Eq. �60� tends to the asymptotic form of the
Poisson distribution in the limit q→1

TEMPORAL EXTENSIVITY OF TSALLIS’ ENTROPY¼ PHYSICAL REVIEW E 74, 021120 �2006�

021120-5



f�n� ——→
q→1 e−Np

�2
n
exp�n − n ln

n

Np
� �64�

with rq→p=1/e �q→1� in Eq. �36�.

VI. CONCLUDING REMARKS

We have shown by generalizing the formulation of ther-
mostatistics based on time averages that the Tsallis entropy is
temporally extensive. We have also shown that, as
Boltzmann-Gibbs statistical mechanics, nonextensive statis-
tical mechanics can also be consistently constructed based on
time averages. Then, we have presented the universal bound
on the Tsallis-entropy production rate. In addition, we have
analyzed the probabilistic process �i.e., the sojourn time dis-
tribution in the cells� in the phase space and have determined
its asymptotic property.

In the present work, we have been concerned with tem-
poral extensivity of entropy. It is considered �1� that temporal
extensivity in a fully chaotic dynamical system corresponds
to thermodynamic extensivity �i.e., linear scaling with re-
spect to the number of particles� in a statistical system. From
the combined viewpoints of statistics and dynamics, exten-
sivity of entropy seems to be an indispensable premise for
temperature to be definable �3,14,17�. Recently, it has been
shown �19� that the Tsallis entropy behaves as an extensive

quantity if a system contains strong correlation of a specific
type. It is necessary to understand such correlation from dy-
namics at the edge of chaos. On the other hand, upon proving
temporal extensivity of the Tsallis entropy, we have used the
probabilistic process in the phase space. Thus, it is equally
necessary to clarify if dynamics at the edge of chaos can
certainly yield such a process �and, simultaneously, nonex-
tensive statistical mechanics�.

There is yet another interesting issue to be addressed.
Strictly speaking, it is sufficient to realize temporal extensiv-
ity of entropy only in the large-N limit, i.e., the long-time
limit. In recent works �20,21�, it has numerically been shown
that not only the Tsallis entropy but also the quantum-group
entropy �22� and the �-entropy �23� possess temporal exten-
sivity in the long-time limit for several dynamical systems at
the edge of chaos. These generalized entropies are concave
and Lesche stable �24,25�, as the Tsallis entropy is �26�.
These facts indicate that there may be a certain level of di-
versity in microscopic description of thermostatistics of com-
plex systems. It is desirable to be possible to formulate theo-
ries for those entropies based on time averages and to show
them temporally extensive, as done in the present work.
These remaining issues are to be clarified and solved for
deeper understanding of statistical mechanics of complex
systems.
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